AMPHI-AMERICAN Neogene teleostean tropical fishes

Everlyn González-Castillo, Félix Rodríguez-Mejía, Marcus Rodrigues Da Costa, Orangel Aguilera

PII: S0895-9811(20)30200-5

DOI: https://doi.org/10.1016/j.jsames.2020.102657

Reference: SAMES 102657

To appear in: Journal of South American Earth Sciences

Received Date: 17 February 2020

Revised Date: 16 May 2020

Accepted Date: 18 May 2020

Please cite this article as: González-Castillo, E., Rodríguez-Mejía, Fé., Da Costa, M.R., Aguilera, O., AMPHI-AMERICAN Neogene teleostean tropical fishes, *Journal of South American Earth Sciences* (2020), doi: https://doi.org/10.1016/j.jsames.2020.102657.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Author contributions

EGC and OA conceived and designed the project. EGC, MR, FR, and OA designed and performed the experiments. FR and OA performed the field trip and sample collection. EGC, FR, MR, and OA analyzed the context of the information. EGC and OA wrote the paper. EGC, MR, FR, and OA revised and edited the manuscript.

....romation.

1	AMPHI-AMERICAN NEOGENE TELEOSTEAN TROPICAL FISHES
2	Everlyn González-Castillo ¹ , Félix Rodríguez-Mejía. ² , Marcus Rodrigues Da Costa ¹ , Orangel
3	Aguilera ¹
4	¹ Universidade Federal Fluminense, Instituto de Biologia, Programa de Pós-graduação em
5	Biologia Marinha e Ambientes Costeiros, LP&MG, Campus do Gragoatá, Bloco M, Sala 110
6	CEP: 24210-200, Niterói, Rio de Janeiro, Brasil.
7	² Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama.
8	¹ Corresponding author: <i>e-mail address</i> : everlyncastillo@id.uff.br
9	
10	Abstract
11	During the last 20 years of paleontological expeditions in different sedimentary basins of
12	Brazil, Colombia, Costa Rica, Ecuador, Jamaica, Trinidad, Panama, the Dominican Republic
13	and Venezuela, teleost otoliths have been found along the Tropical Western Central Atlantic
14	(TWCA) and the Tropical Eastern Central Pacific (TECP); these otoliths relate to the amphi-
15	American distribution of fishes and the paleoceanographic and paleoenvironmental changes in
16	the region during the Cenozoic. This study analyzes of the marine fish fossil based on
17	comprehensive species records belonging to the Neogene period and listed at the generic
18	level. Joint classification and ordination techniques were used to identify and analyze data
19	comprising 169 genera belonging to 56 families and 20 orders, which were mostly
20	represented by the demersal species that inhabit shallow waters. Analyses of principal
21	components were used to calculate the covariance and the variance between formations,
22	countries, basins, and age. The results showed that the main faunistic changes along the
23	geochronological sequence in the Neogene basins of tropical America were a consequence of

24 paleoenvironmental changes.

25

Key words: paleobiogeography, marine paleoenvironment, tropical America, otolith, fossilfish.

28

29 1. Introduction

30 During the last 20 years, paleontological expeditions conducted in the Neogene

31 sedimentary basins in almost 45 formations from ten countries/basins of Tropical America

32 have revealed that the presence of fossil bony fishes with extraordinary body sizes is a myth.

33 The early natural history from the New World in Columbian times excessively promotes the

34 discoveries of giant fishes and minimizes the importance of small to medium sizes demersal

35 fishes (Keegan, 1989; Asuá and French, 2016). However, with few exceptions, most of the

36 Teleostean fossil species records are even smaller than the living counterparts.

Contextual interpretation of stratigraphical information and microfacies reveals that these fossil fishes inhabited sandy and mudstone bottoms in shallow water, some of which are associated with ancient estuarine systems in the Proto-Caribbean, pre-Amazon delta, and exceptionally, in coastal marine areas influenced by upwelling.

Teleostean otolith and diagnostic bones of Neogene fishes are thoroughly preserved in several Miocene to Pleistocene basins in countries along the tropical western central Atlantic (TWCA) and the tropical eastern central Pacific (TECP). However, the preservation of articulate fossil skeletons is rare; therefore, diagnostic structures of isolated bones have been used for taxonomical identification.

46 Most of the studies of Neogene teleostean fish associations published in the last decade

2

47 from tropical America were focused on the taxonomic scope of families (e.g., Myctophidae: 48 Schwarzhans and Aguilera, 2013; Sciaenidae: Aguilera et al., 2016; Carapidae, Ophidiidae and Bythitidae: Schwarzhans and Aguilera, 2016; Ariidae: Aguilera and Marceniuk, 2018; 49 Diodontidae: Aguilera et al., 2017; Tetraodontidae: Aguilera et al., 2018), whereas other 50 contributions discussed the context of fish assemblages by countries/formations (e.g., 51 52 Trinidad: Nolf, 1976; Dominican Republic: Nolf and Stringer, 1992; Costa Rica: Laurito, 53 1996; Jamaica: Stringer, 1998; Ecuador: Landini et al., 2002; Brazil: Aguilera et al., 2014; Venezuela: Nolf and Aguilera, 1998; Aguilera and Rodrigues de Aguilera, 2001; Núñez-54 Flores, 2017). 55

56 The exceptional teleostean fish paleodiversity in the TWCA and TECP provides a valuable opportunity to understand the origin of modern fauna and to elucidate the macroevolutionary 57 responses in coastal fauna affected by: (1) the paleoceanographic and paleoenvironmental 58 changes in the region as a consequence of tectonic dynamics between the Caribbean, the 59 North and South American plates, the Nazca and Cocos plates, with all interacting during the 60 geographic configuration of the Proto-Caribbean and the orogenesis of the greater and lesser 61 Antilles islands (Bachmann, 2001; Coates et al., 2005; Pindell et al., 2005; Pindell and 62 Kennan, 2009; Montes et al., 2019); (2) the rise of the Andes cordillera, which isolated the 63 inflow of the northern drainage system of the Amazonian effluents to the Proto-Caribbean 64 (Rod, 1981; Díaz de Gamero, 1996; Shephard et al., 2010; Aguilera et al., 2013); (3) the onset 65 of the transcontinental Amazon River (Damuth and Kumarm, 1976; Wolff and Carozzi, 1984; 66 Brandão and Feijó, 1994; Silva et al., 1998; Figueiredo et al., 2009; Watts et al., 2009; 67 Rossetti et al., 2015); (4) the Miocene marine incursion in northwestern South America 68 (Hoorn et al., 2017; Jaramillo et al., 2017); (5) the sea level and climate changes during the 69 Oligocene-Miocene global cooling Mi-1 and Miocene Climatic Optimum (Hag et al., 1987; 70 71 Zanchos et al., 2001; Kominz et al., 2008; Stewart et al., 2017); and (6) the severance of the

72	Central American Seaway (CAS) by the uplift of the Talamanca cordillera and the complete
73	isolation of the Atlantic/Pacific oceans by the Panamanian isthmus, and the final
74	configuration of the Caribbean Sea (Montes et al., 2012, 2015; Coates and Stallard, 2013;
75	O'Dea et al., 2016; Jaramillo et al., 2017; Molnar, 2017; Jaramillo, 2018).
76	A paleobiogeographical review of biotic responses as a consequence of CAS isolation was
77	made at length by Leigh et al. (2013) and corroborated the chronological dynamics of
78	paleoceanography and paleoenvironmental influences of the Caribbean and Amazon River
79	within the context of fish fauna distribution (Echeverry and Gallo, 2015).
80	Phylogenies, the divergence time of origin, and the diversification of modern species use
81	fossil species records as references for calibrating the molecular clock (retrospective
82	molecular age) (e.g., Anguillormes: Santini et al., 2013; Apogonidae: Mabuchi et al., 2014;
83	Ariidae: Marceniuk et al., 2012; Batrachoididae: Greenfield et al., 2008; Centropomidae:
84	Tringali et al., 1999; Diodontidae: Yamanoue et al., 2011; Haemulidae: Tavera et al., 2012;
85	Lutjanidae: Gold et al., 2011; Sciaenidae: Lo et al., 2015; Tetraodontidae: Arcila and Tyler,
86	2017); however, future research in evolutionary trends could support an accurate
87	interpretation about the diversification of tropical species.
88	The similarity of the marine fauna preserved in Miocene sediments from Ecuador,
89	Colombia, Costa Rica, Panama, and Venezuela promoted the designation of the Gatunian
90	Faunal Province (between TCWA and TECP), named after the late Miocene Gatun Formation
91	in Panama (Woodring, 1974; Petuch, 1982, 1988, 2004; Landau et al., 2008). In contrast, the
92	fauna after the closure of the Isthmus of Panama was sufficiently distinct to warrant the use of
93	the term Pliocene Caribbean Province (Landau et al., 2008). Both provinces reflect the
94	lithostratigraphic sequences across the Caribbean and the shift from one to the other broadly
95	records a widespread biological extinction and turnover in the TCWA and TECP marine

96 fauna.

Based on the compositional structure of fish assemblages preserved in fossil bones, teeth,
and otoliths, the Gatunian Faunal Province can be divided into five sub-provinces: Antillean,
Costa Rican, Panamanian, Venezuelan, and Western Central Atlantic (Aguilera et al., 2011;
Aguilera and Páes, 2012). The relationship of the Brazilian equatorial fish faunas amongst
these sub-provinces has yet to be explored.

102 In this study, we used detailed basinal information from teleostean fossil fishes to more 103 comprehensively expose the biogeographical and geochronological dynamics of the tropical fishes of the Americas, following the country, basin, and age trends. We also connected the 104 observed macroevolutionary differences with the tectonic and paleoenvironmental context, 105 106 showing that extinction and the biotic turnover were related to paleoenvironmental changes 107 and habit loss. This is because habitat loss plays a major role in extinction and geographic isolation as a consequence of paleoceanographic and geographic changes (e.g., onset of the 108 109 Amazon and Orinoco delta; complete uplift of Isthmus of Panama), thus triggering vicariance.

110

- 111 2. Materials And Methods
- 112 **2.1.** Study Area

The Neogene tropical America teleostean otolith fish assemblages were obtained from nine
countries/basins (Fig.1) during paleontological expeditions in Brazil, Colombia, Costa Rica,

115 Ecuador, Panama, and Venezuela, and they were reviewed and organized under the scope of:

- 116 (1) The Federal University of Pará, the Museu Paraense Emilio Goeldi and the Federal
- 117 Fluminense University, Brazil (Pirabas Paleontology Project), (2) the Universidad del Norte,
- 118 Colombia (La Guajira Paleontology Project), (3) the Smithsonian Tropical Research Institute,
- 119 Panama (Panama Paleontology Project), and (4) the Francisco de Miranda University,

Venezuela (Venezuelan Paleontology Project). Specimens from Trinidad and the Dominican
Republic were studied based on additional samples and collections at the Basel Museum of
Natural History and the Smithsonian National Museum of Natural History in Washington
D.C. Data from Jamaica as well as complementary information were retrieved from published
literature (Supplementary table 1).

All formations and locations were described by stratigraphic age, countries, and basins

126 following the stratigraphic information detailed in relevant literature (e.g., Schwarzhans and

Aguilera, 2013; Aguilera et al., 2016). The stratigraphic data follow the International

128 Chronostratigraphic Chart (ICS: Cohen et al., 2013), edition 2019/05, modified in the context

129 of the Neogene fish records of tropical America (Fig. 2) by Schwarzhans and Aguilera (2013)

130 and Aguilera et al. (2016).

131

132 2.2. Sampling design

For the taxonomic list of species, we adopted the most recent published fossil species 133 descriptions per country, basin, and stratigraphic age. In addition, we used novel unpublished 134 data. For this study, the taxonomy was normalized according to the standard ecological and 135 136 paleontological methods (Foote and Miller, 2007; Greffard et al., 2011; Carrillo-Briceño et al., 2018). A comparative analysis of fine versus coarse taxonomic resolution may be 137 138 adequate for trends of paleobiogeographic and paleoenvironmental analyses. However, despite the highest possible level of taxonomic resolution to diminish distortions caused by 139 preservation and sampling biases, endemic groups, and nomenclatural issues, we chose the 140 generic level, such as the most accurate taxonomy, to be analyzed. However, fossil records of 141 142 few relevant families without generic and specific identifications are included as well (e.g., 143 Gobiidae, gen. sp. ind.). Biases in the analyses can be attributed to rare taxa that occur as

singletons in a country/basin or the absence of (unpreserved or not yet studied) taxa in a

145 specific country/basin (e.g., Cuba and Puerto Rico).

146 Most of the fossil fish were recovered from different expeditions (except for a few units),

and most of them corresponded to independent field trips using different collecting methods

148 (e.g., bulk samples vs. individual outcrop picking). Additionally, fossil preservation,

taxonomic research, and the available published data are different in terms of identification

150 level. Finally, the stratigraphic sequences along tropical America show a preservation gap.

151 The stratigraphical position, facies analyses, paleodepth interpretations, and analysis of

associated fauna are the main data for paleoenvironmental interpretations.

153 **2.3. Data analysis**

The data of fish genera occurrences were arranged in a matrix formed by 30 columns and
171 rows, and each genus was assigned an Identification Code (ID) consisting of the first four
letters. Each country and basin were represented in columns (nine countries) in five
stratigraphic ages (EM: early Miocene, MM: middle Miocene, LM: late Miocene, PI:
Pliocene, and PE: Pleistocene). A row represents the genera occurrence for each country/basin
(Supplementary table 2).

160 To verify whether a fossil fish assemblage structure changed according to the

161 geochronological periods, a Permutational Analysis of Variance (PERMANOVA) was

162 conducted on both the quantitative and qualitative data. The similarity matrix was built using

163 Euclidean distance, and permutation of residuals was performed under reduced model to

164 compare all periods (Anderson et al., 2008).

165 An ordination technical principal component analysis (PCA) was applied to the

sedimentary basins to detect spatial or temporal patterns of the smallest available taxonomic

records (genera) along with the stratigraphic age. The analysis was performed with CANOCO
version 4.5 software (TerBraak and Smilauer, 2002).

Differences in the taxonomic structure between basins of specific countries sampled in the 169 170 tropical Americas were tested by calculating the average taxonomic distinctness (Δ +) and the variation in the taxonomic distinctness (Λ +) following the procedure of Clarke and Warwick 171 172 (1999). To determine the Δ + and Λ +, which measure the degree to which genera are 173 taxonomically related to each other and the degree to which taxa are highly or poorly represented, respectively a presence/absence matrix of all the basins was used as well as an 174 aggregation matrix with five taxonomic levels (genera, family, order, class, and phylum). The 175 176 average taxonomic distinctiveness is not dependent on the sampling effort (Clarke and Warwick, 2001). Furthermore, a test can be constructed for the null hypothesis that a species 177 list (species richness S) from one locality (or time) has the same taxonomic distinctness 178 179 structure as the 'master' list (e.g., of all species in that biogeographic region) from which it is drawn. This is ensured by simple randomization: If "s" species are observed in a particular 180 sample, repeated drawings are made at random of "s" species from the master list and Δ + is 181 computed for each drawing, thus creating a funnel and a 95% probability range of values of 182 Δ + expected under the null hypothesis, in which the true Δ + can be compared. Values below 183 184 the lower probability limit suggest biodiversity that is 'below expectations'. This process can be performed for a range of sub-list sizes and the limits plotted against S to obtain a 95% 185 'funnel' of expected values (the funnel arises from the uncertainty being greater for smaller 186 sub-list). This can be repeated for Λ +, thus providing a second 95% funnel set. Δ + and Λ + 187 were calculated from the master list of all genera using the Taxdtest subroutine of the 188 PRIMER v6 Program (Clarke and Gorley, 2006). To calculate the average indices' taxonomic 189 190 distinctness and their variation, the basins of VMM (Venezuela middle Miocene), VPE (Venezuela Pleistocene), CRMM (Costa Rica middle Miocene), TPI (Trinidad Pliocene), JPI 191

- 192 (Jamaica Pliocene) were excluded because only one or two genera are present, which is
- insufficient for calculating these indices (Clarke and Warwick, 1999).
- Abbreviations used in the text and figures are as follows: BR: Brazil; CO: Colombia; CR:
- 195 Costa Rica; DR: Dominican Republic; E: Ecuador; J: Jamaica; P: Panama; T: Trinidad; V;
- 196 Venezuela; EM: early Miocene (23.03–20.43 Ma); MM: middle Miocene (15.97–13.65 Ma);
- 197 LM: late Miocene (11.61–7.25 Ma); PI: Pliocene (5.33–2.59 Ma); PE: Pleistocene (1.81–0.13

2.9100

198 Ma); FM: Formation.

199

200 **3. Results**

201 **3.1 Fish assemblage**

- A total of 169 genera of fossil teleostean fishes were identified by their otoliths (except
- 203 Chilomycterus and Lagocephalus) for the Miocene-Pleistocene fossiliferous formations from
- tropical America (Figs. 3-7, Tables 1-5), distributed in 20 orders and 56 families. The most
- representative families and the numbers of genera of the ichthyofauna were: Sciaenidae (29),
- 206 Myctophidae (16), Ophidiidae (11), Ariidae (9), Bythitidae (6), Congridae (6), Haemulidae
- 207 (6) and Sparidae (5). These genera accounted for 52% of the total frequency of the fish
- assemblage and were mainly associated with deposits in shallow water, near-shore
- 209 environments, or coastal marine areas with upwelling influences.

210 **3.2.** Stratigraphic distribution and frequency of teleostean fish genera by age

- 211 The permutational variance analysis (PERMANOVA) showed no significant difference
- between the Miocene, Pleistocene and Pliocene (Pseudo-F= 0.81249, P= 0.468).
- 213 Our PCA indicated that the early Miocene was characterized by two distinctive fish
- assemblages of the tropical equatorial Atlantic coast, where PC1 was represented by fishes

215	from the Venezuela basin that explained 63.7% of the variance. This assemblage was
216	characterized by the dominance of Sciaenidae that inhabited shallow waters. PC2 indicated
217	that the fishes recorded in the Colombia basin explained 22.5% of the variance. This
218	assemblage was characterized by the diversity of Sciaenidae and Myctophidae. The first two
219	PCA axes explained 86.5% (0.637+ 0.225) of the variability of this data (Fig. 3, Table 1).
220	During the middle Miocene, the fish assemblages showed affinities with the Atlantic
221	corridor and amphi-American fossil fish distribution among the basin. PC1 was represented
222	by the Trinidad basin, which explained 40.2% of the variance. The assemblage was
223	dominated by genera of Sciaenidae, Myctophidae, Congridae, and Ophidiidae. PC2 was
224	represented by the Brazilian basin, which explained 31.5% of the variance, as represented by
225	the records of Sciaenidae and Ariidae. The first two PCA axes explained 71.7% (0.402 +
226	0.315) of the variability (Fig. 4, Table 2).
227	In the late Miocene, fossil fish assemblages were associated with the Panama basins,
228	explaining 40.8% of the variance in the PC1. This assemblage was represented by genera of
229	Sciaenidae and Haemulidae. PC2 came from the Dominican Republic basins, explaining 25.3
230	% of the variance, and the assemblage was represented by the genera of Sciaenidae,
231	Myctophidae, and Bythitidae. The first two PCA axes explained 74.1% of the data variability
232	(Fig. 5, Table 3).
233	PC1 from the Pliocene was represented by the Ecuador basin, explaining 31.9% of the

variances and was characterized by the Haemulidae, Paralichthyidae, Clupeidae, Congridae,
and Sciaenidae genera. PC2 in this age was from Panama and Costa Rica, which explained
20.7% of the variance, and the fish assemblage was represented by the Myctophidae genera.
The first two PCA axes explained 52.6% of the variability (Fig. 6, Table 4).

10

During the Pleistocene, PC1 from the Panama and Costa Rica basins explained 62.2% of

the variance, as characterized by the dominance of Myctophidae and Ophidiidae genera,

whereas PC2 from the Panama basin explained 23.9 % of the variance, being dominated by

the Bythitidae and Ophidiidae genera. The first two PCA axes explained 86.1% of the

- 242 variability (Fig. 7, Table 5).
- 243 **3.3.** Context of taxa by paleoenvironment

244 Most of the genera evaluated in this study inhabited shallow tropical waters of a less than

100 m depth (e.g., Ariidae and Sciaenidae). However, exceptional fish faunas represented by

open marine mesopelagic Myctophidae have been recorded from coastal marine

247 paleoenvironments with upwelling influences. Other genera are typical pelagic fish during the

adult stage, but during their juvenile stage, these genera were found near the coast (e.g.,

249 Carangidae and Clupeidae). There was a high diversity of fish associated with soft bottoms

250 (e.g., Paralychthidae and Cynoglossidae), rocky bottoms, and/or coral reefs (e.g., Sparidae

and Haemulidae), and brackish and/or estuarine areas (e.g., Mugilidae and Centropomidae)

252 (Tables 2–6).

3.4. Potential use of a fish assemblage in the geochronological approach

In this study, we registered exceptional records of extinct species from a specific

stratigraphic age. Examples include *†Frizzellithus* Schwarzhans, 1993 and *†Protonebris*

Aguilera, Schwarzhans and Béarez, 2016, occurring exclusively in the early Miocene;

257 *†Amazonsciaena* Aguilera, Schwarzhans and Béarez, 2016 occurring only in the middle

258 Miocene; and *†Cantarius* Aguilera, Moraes-Santos, Costa, Ohe, Jaramillo and Nogueira,

- 259 2013, †*Equetulus* Aguilera and Schwarzhans, 2014, †*Protolarimus* Aguilera and
- 260 Schwarzhans, 2014 and *†Xenotolithus* Schwarzhans, 1993, from the early Miocene to late

261 Miocene. Representative images of these fossil genera are included in Figure 8. All records

are consistent in the tropical American Neogene basins (Supplementary figure 1, 2).

263 3.5 Average taxonomic distinctness and variation of the taxonomic distinctness

The Δ + represented in these areas of tropical America was 55. The Δ + model built at the 264 sedimentary basin level showed that most of the values within the 95% confidence intervals 265 were statistically different, except for the late Miocene of Costa Rica, Pliocene of Venezuela, 266 267 and Pleistocene of the Ecuador and Trinidad basins (Fig. 9.1). The index of Λ + followed the same behavior, where the sedimentary basins were within the 95% confidence interval. The 268 early and late Miocene of Trinidad (greater variation of the taxonomic distinctness Λ +), early 269 Miocene of Colombia, late Miocene and Pleistocene of Ecuador, and Pliocene of Venezuela, 270 which are located outside of the trusted channel (Fig. 9.2). 271

272

273 4. Discussion

274 4.1 Paleoecology

The fossil teleostean fish assemblage from tropical America during the early Miocene to the
Pleistocene is characterized by a high diversity of genera that inhabit coastal marine
environments. The 169 genera recorded from nine sedimentary basins include 158 extant and
11 extinct genera reflecting a wide geographical distribution, heterogeneous environments,
and different stratigraphic arrangements.

280 The number of recognized teleostean genera increased from the early Miocene to the late

281 Miocene (125 genera) and then decreased toward the Pliocene (115 genera) (Fig. 10). This

was consistent with observations made from fossil sharks and ray diversity from the Neogene

of the tropical Americas (Carrillo-Briceño et al., 2018) and mollusks (Jackson et al., 1993),

the latter of which reached its highest abundance and diversity during the late Miocene inPanama.

286	The families that presented the greatest number of genera throughout all ages were as
287	follows: Sciaenidae [inner shelf, estuarine freshwater, common in Angostura, Cantaure,
288	Canoa, Cercado, Gatun and Manzanilla formations, and dominant in Pirabas Urumaco and
289	Rio Banano formations (Aguilera et al., 2016)], Myctophidae [mesopelagic, common in
290	Brasso, Cantaure, Gurabo, Mao and Onzole formations, and dominant in Armuelles, Bowden
291	Burica, Cayo Agua, Cercado, Chagres, Cubagua, Escudo de Veraguas, Gurabo, Nancy Point,
292	Swan Cay, Shark Hole Point, and Tobade formations (Schwarzhans and Aguilera, 2013)],
293	Ophidiidae [benthic on shelf to bathybenthic, common in Angostura, Canoa, Cercado and
294	Onzole formations (Schwarzhans and Aguilera, 2016)], Congridae [shelf, littoral, common in
295	Baitoa, Bowden, Brasso, Cantaure, Gurabo, Manzanilla, Mao, Nariva, Pirabas, and Tamana
296	formations (Nolf, 1976; Nolf and Stringer, 1992; Nolf and Aguilera, 1998; Stringer, 1998;
297	Aguilera et al., 2014)], and Ariidae [inner shelf, estuarine, freshwater, and common in
298	Cantaure, Manzanilla, Pirabas, and Urumaco formations (Aguilera et al., 2013, 2020)].
299	The Sciaenidae dominate the generic diversity in the early Miocene, late Miocene, and
300	Pleistocene. The genera diversity of Myctophidae was dominant during the Pliocene, and
301	Ophidiidade was dominat in the middle Miocene (Fig. 11). This result shows that most
302	locations sampled for the Gatunian Province reflected a wide range of shallow marine
303	environments with an exceptional upwelling influence in coastal marine areas.
304	The dominance of Sciaenidae fossil genera in this "trans-American" marine region during
305	the Miocene to the Pleistocene could be attributed to the area being considered a
306	diversification center of Sciaenidae since at least the early Miocene (Sasaki, 1989; Xu et al.,
307	2014; Lo et al., 2015; Aguilera et al., 2016). This diversification is due to their resilience

13

308	under high salinities associated with their life history (Costa et al., 2014). This family inhabits
309	mostly marine shallow waters (except Protosciaena, which can live at depths as low as 600
310	m) as well as brackish and estuarine environments, but some are exclusively freshwater taxa
311	(Chao, 1976; Cook et al., 2012; Aguilera et al., 2016).
312	The environmental preferences of ancient to modern Sciaenidae were transitional from
313	euryhaline to marine and freshwater (Lo et al., 2015; Cooke et al., 2011). Additionally, the
314	hydrological systems located in the northern part of South America, which are associated with
315	the western Amazon mega-wetlands of Pebas and the shifts of the paleo-Amazon and paleo-
316	Orinoco, offered a favorable setting for the evolution of the Sciaenidae (Torres, 2006;
317	Beheregaray et al., 2015; Aguilera and Rodriguez de Aguilera, 2003; Aguilera et al., 2016).
318	The exceptional fish fauna diversity, as represented by open marine mesopelagic
319	Myctophidae in the Neogene Marine biota of tropical America (Schwarzhans and Aguilera,
320	2013), has been recorded from coastal marine paleoenvironments with upwelling influences
321	[e.g., the Cantaure and Cubagua formations in Venezuela (Nolf and Aguilera, 1988; Aguilera
322	and Rodrigues de Aguilera, 2001), the Cercado, Gurabo, and Mao formations in the
323	Dominican Republic (Nolf and Stringer, 1992), and the Bowden Formation in Jamaica
324	(Stringer, 1998)]. Multiple studies exist for both Holocene dredged sediments (Schwarzhans,
325	2013) and Mio-Pliocene sediments (e.g., Schwarzhans and Aguilera, 2013) where the
326	abundance of Myctophidae can directly be related to a pelagic environment. However,
327	Myctophidae are so common that one can also find specimens in shallow water environments,
328	albeit subordinately (Schwarzhans, personal communication). This result does not contradict
329	the occurrences of fossil Myctophidae in shallow water sedimentary deposits at the coastal
330	margin of Proto-Caribbean islands at the oceanfront, which is bounded by a submarine trench
331	and is influenced by oceanographic events such as the force of coastal upwelling. Opposing
332	that is the fish assemblage from the coastal plain and shallow water of the Pirabas Formation

in Brazil (Aguilera et al., 2014) or the fish assemblage of the Urumaco Formation in
Venezuela (Sánchez-Villagra and Aguilera, 2006); both do not contain a single otolith of
Myctophidae.

336 4.2. Geochronological correlation of fauna

The faunal changes along the geochronological sequence in Neogene tropical America 337 basins following unequivocal paleoenvironmental associations were in accordance with the 338 339 following points: (1) The early Miocene evolutionary response (turnover) to the global 340 cooling episode and the Mi-1 glaciation (Stewart et al., 2017; Egger et al., 2018) during the Oligocene-Miocene, as characterized by the South Caribbean (Venezuela and Colombia 341 Basin) show a Western central Atlantic corridor faunal assemblage. (2) The middle Miocene 342 assemblage relationship of the tropical Atlantic corridor was characterized by the Trinidad 343 344 and Brazil basins and their associated fauna, with connectivity to the sedimentary basin of Ecuador (Fig.12). (3) The Trinidad assemblages from the middle Miocene, with the influence 345 346 of the Atlantic/Pacific seaway, were replaced by the Caribbean group (Panama, Dominican 347 Republic and Venezuela) in the Late Miocene as consequence of the Andes uplift, the origin of the transcontinental Amazon River, and the onset of the Amazon delta. (4) The Panama and 348 Costa Rica Pliocene assemblages form a strongly linked Central America group separated 349 350 from an Ecuadorian group, and the Caribbean islands (Trinidad, the Dominican Republic, and Venezuela) show an additional group. These new arrangements appear to be closely related to 351 352 the uplift of the Isthmus of Panama and the generic diversification (turnover). (5) The Pleistocene assemblages are the new faunal arrangement for the Caribbean (Costa Rica and 353 354 Panama) with fauna from Ecuador (Fig.13). The paleoceanographic, geographic, 355 hydrographic, and climate changes are unique natural conditions showing that the marine fauna can be the best macroevolutionary response to the environmental changes. 356

357 4.3. Chrono-bioindicators

Until now, otoliths of fossil fishes have been used for biostratigraphic purposes, but 358 359 admittedly with mixed results. Unpreserved or eroded otolith and disarticulate fish skeletons 360 (mostly not diagnostic) as well as gaps without a uniform distribution into the rock matrix are the main obstacles to an accurate validation. However, the use of fossil otoliths as a 361 362 geochronological approach from the Neogene tropical America (Fig. 3) suggest that six 363 genera of Sciaenidae and one of Ariidae are useful for stratigraphic purposes at the genus level. The Sciaenidae genera are represented by *†Frizzellithus* (Cantaure FM, Venezuela; 364 365 Castillete and Jimol FMs, Colombia) and †Protonebris (Castillo FM, Venezuela) recorded 366 exclusively from the early Miocene, †Amazonasciaena (Pirabas FM, Brasil), exclusively from the middle Miocene, and *†Equetulus* (Pirabas FM, Brasil; Castillete FM, Colombia; Cantaure 367 and Urumaco FMs, Venezuela; Tuira and Gatún FMs; Panama and Angostura FM, Ecuador), 368 *†Protolarimus* (Cantaure and Urumaco FM Venezuela, Castillete FM Colombia) and 369 *†Xenotolithus* (Pirabas FM, Brasil; Manzanilla and Brasso FM, Trinidad), which ranged from 370 371 the early Miocene to the late Miocene. The Ariidae are represented by †*Cantarius* (Cantaure 372 FM, Venezuela; Castillete FM, Colombia), which ranged from the early Miocene to the late Miocene. Aguilera et al. (2016) noted that because of their high speciation, the diversification 373 374 and extinction of individual lineages in the evolution of Sciaenidae presented a rich and dense 375 otolith record, whose distribution may be related to paleoenvironmental changes in time and 376 space.

377

4.4. Taxonomic relationship

378 During the late Miocene, the fish of Panama had the highest taxonomic distinctness 379 (Fig.10) compared to the other basins, and had relatively high richness, which implied that 380 this type of marine system had paleoenvironmental characteristics that allowed a more diverse

381 ichthyofauna. Unlike sedimentary basins that had values below the confidence limit, these 382 samples may be associated with possible habitat disturbances because some habitat types may have naturally lower taxonomic distinction values than others. According to Clarke and 383 384 Warwick (1998), taxonomic distinction values do not fall below the lower limit of the 'funnel' unless the habitats degrade in some way. For example, the fish assemblages from the central 385 Atlantic-South Caribbean corridor supported by Colombia early Miocene (COEM) and 386 387 Trinidad early Miocene (TEM) diversity were affected by the marine assemblage of a fluvialdeltaic system of the mega-Amazon (Wesselingh et al., 2001; Hoorn, 2010). In the Pliocene 388 Ecuador (EPE), a cyclic sedimentation pattern that may be interpreted as repeated sea-level 389 390 oscillations (Cantalamessa et al., 2005) that probably affected the taxonomic structures of the 391 fishes.

392

393 5. Conclusion

A complete statistical approach of otolith records from the Neogene of the tropical Americas reveals abundant and diverse demersal fish from all included basins. Sciaenidae and Ariidae were important elements in all Miocene and Pliocene samples and showed a consistently high diversity, including regionalization, over space and time. The paleoceanographic, geographic, hydrographic, and climate changes triggered the turnover and the diversity of present day tropical amphiamerican fish fauna.

400

401 Acknowledgments

402 This research could not have been conducted without the help of a large number of scientist,

403 technicians and students under the scope of the Panama paleontology project and the

404 complimentary Venezuelan and Brazilian paleontology projects, but we especially thank A.

17

405	Coates, J. Jackson, M. Sánchez, R. Sánchez, D. Rodrigues de Aguilera, J. Reyes, C. de Gracia
406	and H. Moraes-Santos for their contributions and support. Special thanks to E. Paes and P.
407	Rochedo for the support and instruction with the statistical analyses, C. Smith and D. Lima
408	for the revision of the manuscript, and W. Schwarzhans for allowing the modification of the
409	photos of the Sciaenidae. Special thanks to W. Schwarzhans, F. Vega-Vera (Editor of J. South
410	Am. Earth Sc.), and to anonymous reviewers who have greatly improved the manuscript, and
411	to X. Saavedra and M. Batista for support us with the English review of final manucript. This
412	study was funded by Coordination for the Improvement of Higher Education Personnel
413	(CAPES) and Brazil Scholarship PAEC-OAS-GCUB to EG-C, and the Brazilian Council of
414	Science and Technological Development - CNPq (grant 404937/2018-7 and productivity
415	research 305269/2017-8 to OA). The authors would like to thank the National Commerce and
416	Industries Agency (MICI) and the Direction of Mining Resources from Panama for the
417	authorization to collect fossil fish otoliths samples.

418

419 Author contributions

420 EGC and OA conceived and designed the project. EGC, MR, FR, and OA designed

421 and performed the experiments. FR and OA performed the field trip and sample

422 collection. EGC, FR, MR, and OA analyzed the context of the information. EGC and OA

423 wrote the paper. EGC, MR, FR, and OA revised and edited the manuscript.

424

425 Literature Cited

426 LITERATURE CITED

427 Aguilera, O., Rodrigues De Aguilera, D., 2001. An exceptional coastal upwelling fish

428 assemblage in the Caribbean Neogene. J. Paleontol. 75, 732–742.

		Dra		
JUUI	IIai			

429 https://doi.org/10.1017/S0022336000039767

- 430 Aguilera, O., De Aguilera, D. R., 2003. Two new otolith-based sciaenid species of the genus
- 431 Plagioscion from South American Neogene marine sediments. J. Paleontol, 77(6), 1133-432 1138.
- 433 Aguilera Socorro, O.A., Ramos, M.I.F., Paes, E.T., Costa, S.A.R.F., Sánchez-Villagra, M.R.,
- 434 2011. The Neogene tropical America fish assemblage and the paleobiogeography of the
- 435 Caribbean region. Swiss J. Palaeontol. 130, 217–240. https://doi.org/10.1007/s13358-011436 0020-9
- 437 Aguilera, O.A., Tavares Paes, E., 2012. The Pirabas Formation (Early Miocene from Brazil)
- and the Tropical Western Central Atlantic Subprovince. Bol. do Mus. Para. Emílio Goeldi.
 7, 29–45.
- 440 Aguilera, O.A., Moraes-Santos, H., Costa, S., Ohe, F., Jaramillo, C., Nogueira, A., 2013.
- 441 Ariid sea catfishes from the coeval Pirabas (Northeastern Brazil), Cantaure, Castillo
- 442 (Northwestern Venezuela), and Castilletes (North Colombia) formations (early Miocene),
- 443 with description of three new species. Swiss J. Palaeontol. 132, 45–68.
- 444 https://doi.org/10.1007/s13358-013-0052-4
- 445 Aguilera, O.A., Schwarzhans, W., Bearez, P., 2016. Otoliths of the Scianidae from Neogene

446 of tropical America, in: Palaeo Ichthyologica. pp. 7–90.

- 447 Aguilera, O., Schwarzhans, W., Moraes-Santos, H., Nepomuceno, A., 2014. Before the flood:
- 448 Miocene otoliths from eastern Amazon Pirabas Formation reveal a Caribbean-type fish
- fauna. J. South Am. Earth Sci. 56, 422–446. https://doi.org/10.1016/j.jsames.2014.09.021
- 450 Aguilera, O., Silva, G.O.A., Lopes, R.T., Machado, A.S., Dos Santos, T.M., Marques, G.,
- 451 Bertucci, T., Aguiar, T., Carrillo-Briceño, J., Rodriguez, F., Jaramillo, C., 2017. Neogene

- 452 Proto-Caribbean porcupinefishes (Diodontidae). PLoS One 12.
- 453 https://doi.org/10.1371/journal.pone.0181670
- 454 Aguilera, O., Marceniuk, A.P., 2018. Neogene tropical sea catfish (Siluriformes; Ariidae),
- 455 with insights into paleo and modern diversity within northeastern South America. J. South
- 456 Am. Earth Sci. 82, 108–121. https://doi.org/10.1016/j.jsames.2017.12.017
- 457 Aguilera, O., Rodriguez, F., Moretti, T., Bello, M., Lopes, R.T., Machado, A.S., dos Santos,
- 458 T.M., Béarez, P., 2018. First Neogene Proto-Caribbean pufferfish: new evidence for
- 459 Tetraodontidae radiation. J. South Am. Earth Sci. 85, 57–67.
- 460 https://doi.org/10.1016/j.jsames.2018.04.017
- 461 Aguilera, O., Lopes, R.T., Rodriguez, F., Santos, T.M., Rodrigues-Almeida, C., Almeida, P.,
- 462 Machado, A.S., Moretti, T., 2020. Fossil sea catfish (Siluriformes; Ariidae) otoliths and in-
- skull otoliths from the Neogene of the Western Central Atlantic. J. South Am. Earth Sci.

464 101, 102619. https://doi.org/10.1016/j.jsames.2020.102619

- 465 Anderson, M.J., Gorley, R.N., Clarke, K.R., 2008. PERMANOVA+ for PRIMER: Guide to
- 466 Software and Statistical Methods, in: Plymouth, UK. pp. 1–214.
- 467 Arcila, D., Tyler, J.C., 2017. Mass extinction in tetraodontiform fishes linked to the
- 468 Palaeocene-Eocene thermal maximum. Proc. R. Soc. B Biol. Sci. 284.
- 469 https://doi.org/10.1098/rspb.2017.1771
- 470 Asúa, M. De, French, R., 2017. A new world of animals: early modern Europeans on the
- 471 creatures of Iberian America. Routledge Taylor & Francis Group.
- 472 Bachmann, R., 2001. The Caribbean plate and the question of its formation. Institute of
- 473 Geology, University of Mining and Technology Freiberg, Department of Tectonophysics
- 474 (17 p). http//www. fiu/orgs/caribgeol 17.

urn		D		5	$\mathbf{r}c$	
սոո	aı			υ.	1.0	

- 475 Beheregaray, L.B., Cooke, G.M., Chao, N.L., Landguth, E.L., 2015. Ecological speciation in
- the tropics: Insights from comparative genetic studies in Amazonia. Front. Genet.
- 477 https://doi.org/10.3389/fgene.2014.00477
- 478 Brandão, J.A.S.L., Feijó, F.J., 1994. Bacia da Foz do Amazonas. Bol. Geociências da
- 479 Petrobras 8, 91–99.
- 480 Cantalamessa, G., Di Celma, C., Ragaini, L., 2005. Sequence stratigraphy of the Punta
- 481 Ballena Member of the Jama Formation (Early Pleistocene, Ecuador): Insights from
- 482 integrated sedimentologic, taphonomic and paleoecologic analysis of molluscan shell
- 483 concentrations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 1–25.
- 484 https://doi.org/10.1016/j.palaeo.2004.09.012
- 485 Carrillo-Briceño, J.D., Carrillo, J.D., Aguilera, O., Sánchez-Villagra, M.R., 2018. Shark and
- 486 ray diversity in the Tropical America (Neotropics) an examination of environmental and
- 487 historical factors affecting diversity. PeerJ. 6, e5313. https://doi 10.7717/peerj.5313
- 488 Chao, L.N., 1976. Aspects of systematics, morphology, life history and feeding of western
- 489 Atlantic sciaenidae (Pisces: Perciformes). https://doi.org/10.25773/v5-gwbd-3q52
- 490 Clarke, K.R., Warwick, R.M., 1998. A taxonomic distinctness index and its statistical
- 491 properties. J. Appl. Ecol. 35, 523–531. https://doi.org/10.1046/j.1365-
- 492 2664.1998.3540523.x
- 493 Clarke, K.R., Warwick, R.M., 1999. The taxonomic distinctness measure of biodiversity:
- 494 Weighting of step lengths between hierarchical levels. Mar. Ecol. Prog. Ser. 184, 21–29.
- 495 https://doi.org/10.3354/meps184021
- 496 Clarke, K.R., Warwick, R.M., 2001. A further biodiversity index applicable to species lists:
- 497 Variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 216, 265–278.

- 498 https://doi.org/10.3354/meps216265
- Clarke, K., Gorley, R., 2006. PRIMER version 6: user manual/tutorial (PRIMER-E Ltd:
 Plymouth, UK).
- 501 Coates, A.G., McNeill, D.F., Aubry, M.P., Berggren, W.A., Collins, L.S., 2005. An
- introduction to the geology of the Bocas del Toro Archipelago, Panama. Caribb. J. Sci. 41,
- 503 374–391.
- 504 Coates, A.G., Stallard, R.F., 2013. How old is the Isthmus of Panama? Bull. Mar. Sci. 89,
- 505 801–813. https://doi.org/10.5343/bms.2012.1076
- 506 Cohen, K.M., Finney, S.C., Gibbard, P.L., Fan, J.X., 2013. The ICS international
- 507 chronostratigraphic chart. Episodes 36, 199–204.
- 508 https://doi.org/10.18814/epiiugs/2013/v36i3/002
- 509 Cooke, G.M., Chao, N.L., Beheregaray, L.B., 2012. Marine incursions, cryptic species and
- 510 ecological diversification in Amazonia: The biogeographic history of the croaker genera
- 511 Plagioscion (Sciaenidae). J. Biogeogr. 39, 724–738. https://doi.org/10.1111/j.1365-
- 512 2699.2011.02635.x
- 513 Costa, M.D.P., Muelbert, J.H., Moraes, L.E., Vieira, J.P., Castello, J.P., 2014. Estuarine early
- 514 life stage habitat occupancy patterns of whitemouth croaker Micropogonias furnieri
- 515 (Desmarest, 1830) from the Patos Lagoon, Brazil. Fish. Res. 160, 77–84.
- 516 https://doi.org/10.1016/j.fishres.2013.10.025
- 517 Damuth, J.E., Kumar, N., 1975. Amazon Cone: Morphology, Sediments, Age, and Growth
- 518 Pattern. Bull. Geol. Soc. Am. 86, 863–878. https://doi.org/10.1130/0016-
- 519 7606(1975)86<863:ACMSAA>2.0.CO;2
- 520 Díaz De Gamero, M.L., 1996. The changing course of the Orinoco River during the Neogene:

- 521 A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/0031-
- 522 0182(96)00115-0
- 523 Echeverry, A., Gallo, V., 2015. Historical relationship of the Caribbean and Amazonian
- 524 Miocene ichthyofaunas: A hypothesis reviewed under a biogeographical approach.
- 525 Geobios 48, 309–320. https://doi.org/10.1016/j.geobios.2015.06.001
- 526 Egger, L.M., Bahr, A., Friedrich, O., Wilson, P.A., Norris, R.D., van Peer, T.E., Lippert, P.C.,
- 527 Liebrand, D., Pross, J., 2018. Sea-level and surface-water change in the western North
- 528 Atlantic across the Oligocene–Miocene Transition: A palynological perspective from
- 529 IODP Site U1406 (Newfoundland margin). Mar. Micropaleontol. 139, 57–71.
- 530 https://doi.org/10.1016/j.marmicro.2017.11.003
- 531 Figueiredo, J., Hoorn, C., van der Ven, P., Soares, E., 2009. Late Miocene onset of the
- 532 Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin.

533 Geology 37, 619–622. https://doi.org/10.1130/G25567A.1

- 534 Foote, M., Miller A. I. (2007). Principles of paleontology. Third Edition. Freeman and
- 535 Company, New York.
- 536 Gold, J.R., Voelker, G., Renshaw, M.A., 2011. Phylogenetic relationships of tropical western
- 537 Atlantic snappers in subfamily Lutjaninae (Lutjanidae: Perciformes) inferred from
- 538 mitochondrial DNA sequences. Biol. J. Linn. Soc. 102, 915–929.
- 539 https://doi.org/10.1111/j.1095-8312.2011.01621.x
- 540 Greenfield, D.W., Winterbottom, R., Collette, B.B., 2008. Review of the toadfish genera
- 541 (Teleostei: Batrachoididae). Proc. Calif. Acad. Sci. 59, 665–710.
- 542 Greffard, M.H., Saulnier-Talbot, É., Gregory-Eaves, I., 2011. A comparative analysis of fine
- 543 versus coarse taxonomic resolution in benthic chironomid community analyses. Ecol.

- 544 Indic. 11, 1541–1551. https://doi.org/10.1016/j.ecolind.2011.03.024
- 545 Haq, B.U., Hardenbol, J., Vail, P.R., 1987. Chronology of fluctuating sea levels since the
- 546 Triassic. Science (80-.). 235, 1156–1167. https://doi.org/10.1126/science.235.4793.1156
- 547 Hoorn, C., Wesselingh, F.P., Ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J.,
- 548 Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff,
- 549 D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., Antonelli, A.,
- 550 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and
- 551 biodiversity. Science (80). https://doi.org/10.1126/science.1194585
- Hoorn, C., Bogotá-A, G.R., Romero-Baez, M., Lammertsma, E.I., Flantua, S.G.A., Dantas,
- 553 E.L., Dino, R., do Carmo, D.A., Chemale, F., 2017. The Amazon at sea: Onset and stages
- of the Amazon River from a marine record, with special reference to Neogene plant
- turnover in the drainage basin. Glob. Planet. Change 153, 51–65.
- 556 https://doi.org/10.1016/j.gloplacha.2017.02.005
- Jackson, J.B.C., Jung, P., Coates, A.G., Collins, L.S., 1993. Diversity and extinction of
- tropical American mollusks and emergence of the Isthmus of Panama. Science 260, 1624–
- 559 1626. https://doi.org/10.1126/science.260.5114.1624
- Jaramillo, C. A., 2018. Evolution of the Isthmus of Panama: biological, paleoceanographic
- and paleoclimatological implications. Mountains, climate and biodiversity. Oxford: Wiley
- 562 Blackwell, 323-338.
- Jaramillo, C., Montes, C., Cardona, A., Silvestro, D., Antonelli, A., Bacon, C.D., 2017.
- 564 Comment (1) on "Formation of the Isthmus of Panama" by O'Dea et al. Sci. Adv.
- 565 https://doi.org/10.1126/sciadv.1602321
- Jaramillo, C., Romero, I., D'Apolito, C., Bayona, G., Duarte, E., Louwye, S., Escobar, J.,

- 567 Luque, J., Carrillo-Briceño, J.D., Zapata, V., Mora, A., Schouten, S., Zavada, M.,
- 568 Harrington, G., Ortiz, J., Wesselingh, F.P., 2017. Miocene flooding events of western
- 569 Amazonia. Sci. Adv. 3. https://doi.org/10.1126/sciadv.1601693
- 570 Keegan, W.F., 1989. The Columbus Chronicles. Sciences (New. York). 29, 47–55.
- 571 https://doi.org/10.1002/j.2326-1951.1989.tb02138.x
- 572 Kominz, M.A., Browning, J. V., Miller, K.G., Sugarman, P.J., Mizintseva, S., Scotese, C.R.,
- 573 2008. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware
- coastal plain coreholes: An error analysis. Basin Res. 20, 211–226.
- 575 https://doi.org/10.1111/j.1365-2117.2008.00354.x
- 576 Landau, B., Vermeij, G., da Silva, C.M., 2008. Southern Caribbean Neogene
- 577 palaeobiogeography revisited. New data from the Pliocene of Cubagua, Venezuela.
- 578 Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 445–461.
- 579 https://doi.org/10.1016/j.palaeo.2007.10.019
- 580 Landini, W., Carnevale, G., Sorbini, C., 2002. Biogeographical significance of northern
- extraprovincial fishes in the Pliocene of Ecuador. Geobios. 35, 120–129.
- 582 https://doi.org/10.1016/S0016-6995(02)00053-0
- Laurito M., C.A., 1996. Análisis preliminar de la Ictiofauna de Alto Guayacán (Costa Rica)
- 584 con base en los Otolitos. Formación Uscari (Mioceno Superior-Plioceno Inferior). Rev.
- 585 Geológica América Cent. https://doi.org/10.15517/rgac.v0i19-20.8629
- Leigh, E.G., O'Dea, A., Vermeij, G.J., 2013. Historical biogeography of the isthmus of
- 587 Panama. Biol. Rev. 89, 148–172. https://doi.org/10.1111/brv.12048
- 588 Lo, P.C., Liu, S.H., Chao, N.L., Nunoo, F.K.E., Mok, H.K., Chen, W.J., 2015. A multi-gene
- 589 dataset reveals a tropical New World origin and Early Miocene diversification of croakers

- 590 (Perciformes: Sciaenidae). Mol. Phylogenet. Evol. 88, 132–143.
- 591 https://doi.org/10.1016/j.ympev.2015.03.025
- 592 Mabuchi, K., Fraser, T.H., Song, H., Azuma, Y., Nishida, M., 2014. Revision of the
- 593 systematics of the cardinalfishes (Percomorpha: Apogonidae) based on molecular analyses
- and comparative reevaluation of morphological characters. Zootaxa.
- 595 https://doi.org/10.11646/zootaxa.3846.2.1
- 596 Marceniuk, A.P., Menezes, N.A., Britto, M.R., 2012. Phylogenetic analysis of the family
- 597 Ariidae (Ostariophysi: Siluriformes), with a hypothesis on the monophyly and
- relationships of the genera. Zool. J. Linn. Soc. 165, 534–669.
- 599 https://doi.org/10.1111/j.1096-3642.2012.00822.x
- Molnar, P., 2017. Comment (2) on "formation of the Isthmus of Panama" by O'Dea et al. Sci.
- 601 Adv. https://doi.org/10.1126/sciadv.1602320
- Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez-
- Angel, L.C., Rodriguez-Parra, L.A., Ramirez, V., Niño, H., 2015. Middle Miocene closure
- of the Central American Seaway. Science (80-.). 348, 226–229.
- 605 https://doi.org/10.1126/science.aaa2815
- Montes, C., Cardona, A., McFadden, R., Morón, S.E., Silva, C.A., Restrepo-Moreno, S.,
- 607 Ramírez, D.A., Hoyos, N., Wilson, J., Farris, D., Bayona, G.A., Jaramillo, C.A., Valencia,
- V., Bryan, J., Flores, J.A., 2012. Evidence for middle Eocene and younger land emergence
- 609 in central Panama: Implications for Isthmus closure. Bull. Geol. Soc. Am. 124, 780–799.
- 610 https://doi.org/10.1130/B30528.1
- Montes, C., Rodriguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S., Cardona, A., 2019.
- 612 Continental margin response to multiple arc-continent collisions: The northern Andes-
- 613 Caribbean margin. Earth-Science Rev. https://doi.org/10.1016/j.earscirev.2019.102903

- Nolf, D., 1976. Les otolithes des Téléostéens néogènes de Trinidad. Eclogae geol. Helv. 69/3,
- 615 703–742.
- Nolf, D., Stringer, G. L., 1992. Neogene paleontology in the northern Dominican Republic:
- 617 Otoliths of teleostean fishes. Bull. Am. Paleontol. 102: 41-81.
- Nolf, D., Aguilera, O., 1998. Fish otoliths from the Cantaure Formation (early Miocene of
- 619 Venezuela). Bull. l'Institut R. des Sci. Nat. Belqique, Sci. la Terre 68, 237–262.
- 620 Núñez-Flores, M., Rincón, A.D., Solórzano, A., Sánchez, L., Cáceres, C., 2017. Fish-otoliths
- from the early Miocene of the Castillo Formation, Venezuela: a view into the proto-
- 622 Caribbean teleostean assemblages. Hist. Biol. 29, 1019–1030.
- 623 https://doi.org/10.1080/08912963.2017.1282474
- 624 O'Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo-Moreno, S.A., Cione, A.L.,
- 625 Collins, L.S., De Queiroz, A., Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M.O.,
- Aguilera, O., Aubry, M.P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E.,
- 627 Duque-Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin,
- 628 L.D., Knowlton, N., Leigh, E.G., Leonard-Pingel, J.S., Marko, P.B., Pyenson, N.D.,
- 629 Rachello-Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J., Jackson,
- 630 J.B.C., 2016. Formation of the Isthmus of Panama. Sci. Adv.
- 631 https://doi.org/10.1126/sciadv.1600883
- 632 Petuch, E.J., 1982. Geographical heterochrony: Comtemporaneous coexistence of neogene
- and recent molluscan faunas in the Americas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 37,
- 634 277–312. https://doi.org/10.1016/0031-0182(82)90041-4
- 635 Petuch, E.J., 1988. Neogene history of tropical American mollusks. Biogeography and
- evolutionary patterns of tropical western Atlantic Mollusca. The Coastal Education and
- 637 Research Foundation, Virginia.

- 638 Petuch, E.J., 2004. Cenozoic seas: The view from Eastern North America, Cenozoic Seas:
- The View From Eastern North America. https://doi.org/10.1201/9780203495858
- 640 Pindell, J.L., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and
- northern South America in the mantle reference frame: An update. Geol. Soc. Spec. Publ.
- 642 328, 1–55. https://doi.org/10.1144/SP328.1
- 643 Pindell, J., Kennan, L., Maresch, W. V, Stanek, K.P., Draper, G., Higgs, R., 2005. Plate-
- 644 kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: Tectonic
- 645 controls on basin development in Proto-Caribbean margins. Spec. Pap. Geol. Soc. Am.
- 646 394, 7–52. https://doi.org/10.1130/0-8137-2394-9.7
- Rod, E., 1981. Notes on the shifting course of the ancient Rio Orinoco from late Cretaceous to
- 648 Oligocene time. Geos 26, 54–56.
- 649 Rossetti, D.F., Cohen, M.C.L., Tatumi, S.H., Sawakuchi, A.O., Cremon, É.H., Mittani, J.C.R.,
- Bertani, T.C., Munita, C.J.A.S., Tudela, D.R.G., Yee, M., Moya, G., 2015. Mid-Late
- 651 Pleistocene OSL chronology in western Amazonia and implications for the
- transcontinental Amazon pathway. Sediment. Geol. 330, 1–15.
- 653 https://doi.org/10.1016/j.sedgeo.2015.10.001
- 654 Sánchez-Villagra, M.R., Aguilera, O.A., 2006. Neogene vertebrates from Urumaco
- 655 Formation, Falcón State, Venezuela: Diversity and significance. J. Syst. Palaeo. 4 (3), 213–
- 656 220. https://doi.org/10.1017/S1477201906001829
- 657 Santini, F., Kong, X., Sorenson, L., Carnevale, G., Mehta, R.S., Alfaro, M.E., 2013. A multi-
- locus molecular timescale for the origin and diversification of eels (Order:
- Anguilliformes). Mol. Phylogenet. Evol. 69, 884–894.
- 660 https://doi.org/10.1016/j.ympev.2013.06.016

- 661 Sasaki, K. 1989. Phylogeny of the family Sciaenidae, with notes on its zoogeography
- (Teleostei, Perciformes). Memoirs of the Faculty of Fisheries Hokkaido University, 36(12), 1-137
- 664 Schwarzhans, W., 2013. Otoliths from dreges in the Gulf of Guinea and off the Azores an
- actuo-paleontological case study. Paleo Ichthyol, 13, 7-40.
- 666 Schwarzhans, W., Aguilera, O. (2013). Otoliths of the Myctophidae from the Neogene of
- tropical America. Palaeo Ichthyol, 13, 83-150.
- 668 Schwarzhans, W., Aguilera, O. (2016). Otoliths of the Ophidiiformes from the Neogene of
- tropical America. Palaeo Ichthyol, 14, 91-124.
- 670 Shephard, G.E., Müller, R.D., Liu, L., Gurnis, M., 2010. Miocene drainage reversal of the
- 671 Amazon River driven by plate-mantle interaction. Nat. Geosci. 3, 870–875.
- 672 https://doi.org/10.1038/ngeo1017
- 673 Silva, S.R.P., Maciel, R.R., Severino, M.C.G., 1999. Cenozoic tectonics of Amazon Mouth
- 674 Basin. Geo-Marine Lett. 18, 256–262. https://doi.org/10.1007/s003670050077
- 675 Stewart, J.A., James, R.H., Anand, P., Wilson, P.A., 2017. Silicate Weathering and Carbon
- 676 Cycle Controls on the Oligocene-Miocene Transition Glaciation. Paleoceanography 32,
- 677 1070–1085. https://doi.org/10.1002/2017PA003115
- 678 Stringer, G.L., 1998. Otolith-based fishes from the Bowden shell bed (Pliocene) of Jamaica:
- 679 systematics and palaeoecology. Meded. van Werkgr. voor Tert. en Kwartaire Geol. 35,
- 680 147–160.
- Tavera, J.J., Acero P, A., Balart, E.F., Bernardi, G., 2012. Molecular phylogeny of grunts
- 682 (Teleostei, Haemulidae), with an emphasis on the ecology, evolution, and speciation
- history of New World species. BMC Evol. Biol. 12. https://doi.org/10.1186/1471-2148-12-

- 684 57
- ter Braak J. F., C., Šmilauer, P., 2002. Canoco reference manual and CanoDraw for Windows
 user's guide 500.
- 687 Torres, R.A., 2006. Molecular taxonomy of Plagioscion Heckel (Perciformes, Sciaenidae) and
- evidence from mtDNA RFLP markers for an invasive species in the Paraná river, Southern
- 689 Brazil. Rev. Bras. Zool. 23, 1235–1242. https://doi.org/10.1590/S0101-
- 690 81752006000400034
- 691 Tringali, M.D., Bert, T.M., Seyoum, S., Bermingham, E., Bartolacci, D., 1999. Molecular
- 692 Phylogenetics and Ecological Diversification of the Transisthmian Fish Genus
- 693 Centropomus (Perciformes: Centropomidae). Mol. Phylogenet. Evol. 13, 193–207.
- 694 https://doi.org/10.1006/mpev.1999.0624
- 695 Watts, A.B., Rodger, M., Peirce, C., Greenroyd, C.J., Hobbs, R.W., 2009. Seismic structure,
- 696 gravity anomalies, and flexure of the amazon continental margin, NE Brazil. J. Geophys.

697 Res. Solid Earth 114. https://doi.org/10.1029/2008JB006259

- 698 Wesselingh, F.P., Rasanen, M.E., Irion, G., Vonhof, H.B., Kaandorp, R., Renema, W.,
- Romero-Pittman, L., Gingras, M., 2002. Lake Pebas: a paleoecological reconstruction of a
- Miocene, long-lived lake complex in western Amazonia. Cainozoic Res. 1, 35–81.
- 701 Wolff, B., Carozzi, A.V., 1984. Microfacies, depositional environments, and diagenesis of the
- 702 Amapá carbonates (Paleocene-Middle Miocene), Foz do Amazonas basin, offshore NE
- 703 Brazil. Petrobras, Série Ciência-Técnica-Petróleo Seção Explor. Petróleo 103 p.
- 704 Woodring, W., 1974. The Miocene Caribbean faunal province and its subprovinces.
- Verhandlungen der Naturforschenden Gesellschaft Basel 84, 209–213.
- Xu, T., Tang, D., Cheng, Y., Wang, R., 2014. Mitogenomic perspectives into sciaenid fishes'

urnal	Dr			
uman			IU	U.

- phylogeny and evolution origin in the New World. Gene 539, 91–98.
- 708 https://doi.org/10.1016/j.gene.2014.01.048
- 709 Yamanoue, Y., Miya, M., Doi, H., Mabuchi, K., Sakai, H., Nishida, M., 2011. Multiple
- 710 invasions into freshwater by pufferfishes (Teleostei: Tetraodontidae): A mitogenomic
- perspective. PLoS One 6. https://doi.org/10.1371/journal.pone.0017410
- 712 Zachos, J., Pagani, H., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and
- aberrations in global climate 65 Ma to present. Science 292, 686-693.
- 714 https://doi.org/10.1126/science.1059412
- 715

716 Figures, tables and legends

Fig. 1. Maps of the sampled regions. 1. Ecuador (1.1) and Brazil (1.2); 2. Costa Rica (2.1)

re prus

- and Panama (2.2–2.5); 3. Colombia (3.1), Venezuela (3.2-3.3), Trinidad (3.4) and the
- 719 Dominican Republic (3.5); and 4. Jamaica. (Modified from Aguilera et al., 2016).
- Fig. 2. Stratigraphic correlation chart depicting stratigraphic positions of otoliths obtained
 from the countries and basins of the tropical Americas. (Modified from Schwarzhans and
 Aguilera, 2013; Aguilera et al., 2016).
- Fig. 3. Principal component analysis (PCA) arranged by genera (blue) and country-basin
- (red) from the early Miocene of tropical America. Abbreviations, COEM: Colombia early
- 725 Miocene; DEM: the Dominican Republic early Miocene; TEM: Trinidad early Miocene;
- and VEM: Venezuela early Miocene (for genera abbreviation see Table 1).
- Fig. 4. Principal components analysis (PCA) arranged by genera (blue) and country-basin
 (red) from the middle Miocene of tropical America. Abbreviation, BMM: Brazil middle

	Journal Pre-proof
729	Miocene; CRMM: Costa Rica middle Miocene; EMM: Ecuador middle Miocene; and
730	TMM: Trinidad middle Miocene (for genera abbreviation see Table 2).
731	Fig. 5. Principal components analysis (PCA) arranged by genera (blue) and country-basin
732	(red) from the late Miocene of tropical America. Abbreviation, CRLM: Costa Rica late
733	Miocene; DLM: Dominican Republic late Miocene; ELM: Ecuador late Miocene; PLM:
734	Panama late Miocene; TLM: Trinidad late Miocene; and VLM: Venezuela late Miocene;
735	(for genera abbreviation see Table 3).
736	Fig. 6. Principal components analysis (PCA) arranged by genera (blue) and country-basin
737	(red) from the Pliocene of tropical America. Abbreviation, CRPI: Costa Rica Pliocene;
738	DPI: The Dominican Republic Pliocene; EPI: Ecuador Pliocene; JPI: Jamaica Pliocene;
739	PPI: Panama Pliocene; TPI: Trinidad Pliocene; and VPI: Venezuela Pliocene (for genera
740	abbreviation see Table 4).
741	Fig. 7. Principal components analysis (PCA) arranged by genera (blue) and country-basin
742	(red) from the Pleistocene of tropical America. Abbreviation, CRPE: Costa Rica
743	Pleistocene; EPE: Ecuador Pleistocene; PPE: Panama Pleistocene; TPE: Trinidad
744	Pleistocene; and VPE: Venezuela Pleistocene (for genera abbreviation see Table 5).
745	Fig. 8. Selected Ariidae and Sciaenidae otoliths from the Neogene of tropical America as a
746	potential geochronological fossil guide. 1–3, Cantarius nolfi Aguilera, Moraes-Santos,
747	Costa, Ohe, Jaramillo and Nogueira, 2013, Castilletes FM, early Miocene, Colombia; 4–5.
748	Amazonasciaena rossettiae (Aguilera and Schwarzhans, 2014), Pirabas FM, middle
749	Miocene, Brazil; 6–7, Frizzellithus longecaudatus (Nolf and Aguilera, 1998), Castilletes
750	FM, early Miocene, Colombia; 8–9, Equetulus amazonensis Aguilera and Schwarzhans,
751	2014, Pirabas FM, middle Miocene, Brazil; 10-12, Equetulus davidandrewi (Nolf and

752	Aguilera, 1998), Cantaure FM, early Miocene, Venezuela; 13, Equetulus fitchi
753	(Schwarzhans, 1993), Manzanilla FM, late Miocene, Trinidad; 14–16, Protolarimus
754	henrici (Nolf and Aguilera, 1998), Cantaure FM, early Miocene, Venezuela; 17-18,
755	Protolarimus? mauryae Aguilera and Schwarzhans, 2014; Pirabas FM, middle Miocene,
756	Brazil; 19–21, Xenotolithus retrolobatus Aguilera and Schwarzhans, 2014, Pirabas FM,
757	middle Miocene, Brazil; 227–24, Xenotolithus sasakii Schwarzhans, 1993, Manzanilla
758	FM, late Miocene, Trinidad; 25–27, Xenotolithus sineostialis Aguilera, Schwarzhans and
759	Bearez, 2016, Manzanilla FM, late Miocene, Trinidad. Scale bar = 2 mm. (Original
760	Sciaenidae photos courtesy of W. Schwarzhans and modified from Aguilera et al. 2014).
761	Fig. 9. Averange taxonomic distinctness (Δ +) and variation of the taxonomic distinctness
762	$(\Lambda +)$ (1 and 2, respectively) for the fish groups of the sites sampled from the Miocene to
763	the Pleistocene of tropical America. A 95% confidence funnel obtained from the global
764	species list is shown in continuous lines and the theoretical average of Δ + and Λ + is
765	shown in a segmented line.
766	Fig. 10. Stratigraphical frequency of fossil fish genera in the Neogene Tropical Western
700	Control Atlantia and Tropical Fastern Pagifia Graen: observed blue: projected and
707	Central Atlantic and Hopical Eastern Pacific. Green, observed, blue, projected, and
/68	yellow: extinct. EM: early Miocene; MMI: middle Miocene; LM: late Miocene; PI:
769	Phocene; and PE: Pleistocene.
770	Fig. 11. Geochronologic sequence of sedimentary basins by country-age of tropical America.
771	Early Miocene (Colombia, the Dominican Republic, Trinidad and Venezuela) to middle
772	Miocene (Brasil, Costa Rica, Ecuador, Trinidad and Venezuela).
773	Fig. 12. Geochronologic sequence of sedimentary basins by country-age of tropical America.
774	Late Miocene (Costa Rica, the Dominican Republic, Ecuador, Panama, Trinidad and

33

775	Venezuela), Pliocene (Costa Rica, Dominican Republic, Ecuador, Jamaica, Panama,
776	Trinidad and Venezuela) and Pleistocene (Costa Rica, Ecuador, Jamaica Panama and
777	Venezuela).
778	Fig. 13. Most frequent families with the highest number of genera of tropical American fish.
779	EM: early Miocene; MM: middle Miocene; LM: late Miocene; PI: Pliocene; PE:
780	Pleistocene. green: Sciaenidae, orange: Myctophidae, gray: Ophidiidae, yellow:
781	Congridae, blue: Ariidae
782	Table 1. Early Miocene abbreviations and remarks used in Figure 3.
783	Table 2. Middle Miocene abbreviations and remarks used in Figure 4.
784	Table 3. Late Miocene abbreviations and remarks used in Figure 5.
785	Table 4. Pliocene abbreviations and remarks used in Figure 6.
786	Table 5. Pleistocene abbreviations and remarks used in Figure 7.
787	
788	Supplementary material
789	Supplementary table 1. References of fossil fish records by authors, formations, ages,
790	countries, and basins. (Modified of Aguilera et al., 2011)
791	Supplementary table 2. Fossil otoliths of fish organized by country, family, genera, ID and
792	age.
793	Supplementary figure 1. Fossil otoliths fish of tropical Americas and geochronological
794	distribution of families and genera.

- Supplementary figure 2. Fossil otoliths fish of tropical Americas and geochronological
- 796 distribution of families and genera.

797

ound

Axis 1		Venezuela Basin (VI	EM)		Continue								
ID	Family	Genera	Score	Habitat	ID	Family	Genera	Score	Habitat				
ALBU	Albulidae	Albula	0.1298	Demersal	PLOT	Plotosidae	Plotosus	0.1298	Demersal				
APOG	Apogonidae	Apogon	0.1298	Reef-associated	POLX	Polymixiidae	Polymixia	0.1298	Demersal				
ARIOP	Ariidae	Ariopsis	0.1298	Demersal	ILIS	Pristigasteridae	llisha	0.1298	Pelagic				
BAGR	Ariidae	Bagre	0.1298	Demersal	NEOP	Pristigasteridae	Neoopisthopterus	0.1298	Pelagic				
CANT	Ariidae	†Cantarius	0.1298	t	APLO	Sciaenidae	Aplodinotus	0.1298	Demersal				
CATH	Ariidae	Cathorops	0.1298	Demersal	ATRA	Sciaenidae	Atractoscion	0.1298	Demersal				
NOTA	Ariidae	Notarius	0.1298	Demersal	EQUE	Sciaenidae	†Equetulus	0.1298	t				
PORI	Batrachoididae	Porichthys	0.1298	Demersal	FRIZ	Sciaenidae	†Frizzellithus	0.1298	t				
BREG	Bregmacerotidae	Bregmaceros	0.1298	Demersal	LARI	Sciaenidae	Larimus	0.1298	Demersal				
TRAC	Carangidae	Trachurus	0.1298	Demersal	PANE	Sciaenidae	Paranebris	0.1298	Demersal				
HARE	Clupeidae	Harengula	0.1298	Pelagic	PARL	Sciaenidae	Paralonchurus	0.1298	Demersal				
OPIS	Clupeidae	Opisthonema	0.1298	Pelagic	PARQ	Sciaenidae	Pareques	0.1298	Demersal				
PELL	Clupeidae	Pellona	0.1298	Pelagic	PLAG	Sciaenidae	Plagioscion	0.1298	Demersal				
CONG	Congridae	Conger	0.1298	Demersal	PLAR	Sciaenidae	†Protolarimus	0.1298	t				
HILD	Congridae	Hildebrandia	0.1298	Demersal	PLYC	Sciaenidae	Polycirrhus	0.1298	Demersal				
PCON	Congridae	Paraconger	0.1298	Demersal	PRNE	Sciaenidae	Protonebris	0.1298	Demersal				
CHIL	Diodontidae	Chilomycterus	0.1298 Demersal PROT Sciaenidae		Sciaenidae	Protosciaena	0.1298	Demersal					
ORTH	Haemulidae	Orthopristis	0.1298	Demersal	STEL Sciaenidae		Stellifer	0.1298	Demersal				
HYPO	Hemirhamphidae	Hyporhamphus	0.1298	Pelagic	ANCH	Sparidae	Archosargus	0.1298	Demersal				
PYTH	Heterenchelyidae	Pythonichthys	0.1298	Demersal	SPAD	Sparidae	Sparidarum	0.1298	Demersal				
MYRI	Holocentridae	Myripristis	0.1298	Demersal	SPHYA	Sphyraenidae	Sphyraena	0.1298	Demersal				
LACT	Lactariidae	Lactarius	0.1298	Mesopelagic	PEPR	Stromatidae	Peprilus 0.		Demersal				
LOBO	Lobotidae	Lobotes	0.1298	Demersal	Axis 2		Colombian Basin (COEM						
OCYU	Lutjanidae	Ocyurus	0.1298	Reef-associated	ID	Family	Genera	Score	Habitat				
STEI	Merlucciidae	Steindachneria	0.1298	Demersal	ARIO	Ariidae	Ariopsis	0.1503	Demersal				
MUGI	Mugilidae	Mugil	0.1298	Demersal	DIAP	Myctophidae	Diaphus	0.1503	Mesopelagic				
UPEN	Mullidae	Upeneus	0.1298	Demersal	HYGO	Myctophidae	Hygophum	0.1503	Mesopelagic				
CERA	Myctophidae	Ceratoscopelus	0.1298	Mesopelagic	OPHS	Sciaenidae	Ophioscion	0.1503	Demersal				
MYCT	Myctophidae	Myctophum	0.1298	Mesopelagic	CENT	Engraulidae	Cetengraulis	-0.2254	Pelagic				
OPIG	Opistognathidae	Opistognathus	0.1298	Demersal	LUTJ	Lutjanidae	Lutjanus	-0.2254	Demersal				
CITH	Paralichthyidae	Citharichthys	0.1298	Demersal	SNYD	Carapidae	Snyderidia	-0.2254	Demersal				
BEMB	Percophidae	Bembrops	0.1298	Demersal	UMBR	Sciaenidae	Umbrina	-0.2254	Demersal				
		30	<i>.</i>										

Early Miocene

				Middl	e Miocene					
Axis 1		Trinidad Basin (TMM)			Continue					
ID	Family	Genera	Score	Habitat	ID	Family	Genera	Score	Habitat	
ANTE	Antennariidae	Antennarius	0.1336	Reef-associated	ARIU	Ariidae	Gen., sp. Ind.	0.1987	Demersal	
BATH	Bathyclupeidae	Bathyclupea	0.1336	Mespelagic	CATH	Ariidae	Cathorops	0.1987	Demersal	
BREG	Bregmacerotidae	Bregmaceros	0.1336	Demersal	ASPI	Ariidae	Aspistor	0.1198	Demersal	
CALA	Bythitidae	Calamopteryx	0.1336	Reef-associated	BAGR	Ariidae	Bagre	0.1198	Demersal	
CARG	Carangidae	Gen., sp. Ind.	0.1336	Demersal	NOTA	Ariidae	Notarius	0.1198	Demersal	
CETN	Centropomidae	Centropomus	0.1336	Demersal	PORI	Batrachoididae	Porichthys	0.2093	Demersal	
OPIS	Clupeidae	Opisthonema	0.1336	Pelagic	THAL	Batrachoididae	Thalassophryne	0.2093	Demersal	
ARIO	Congridae	Ariosoma	0.1481	Demersal	BATR	Batrachoididae	Batrachoides	0.1198	Demersal	
HILD	Congridae	Hildebrandia	0.1336	Demersal	SANO	Batrachoididae	Sanopus	0.1198	Reef-associated	
RHEC	Congridae	Rhechias	0.1336	Demersal	OGIB	Bythitidae	Ogilbichthys	0.1198	Reef-associated	
SYMP	Cynoglossidae	Symphurus	0.1336	Demersal	OGIL	Bythitidae	Ogilbia	0.1198	Demersal	
ANCH	Engraulidae	Anchoa	0.1336	Pelagic	DECA	Carangidae	Decapterus	0.1198	Demersal	
EPIG	Epigonidae	Epigonus	0.1481	Mesopelagic	CARA	Carapidae	Carapus	0.1198	Demersal	
HAEM	Haemulidae	Haemulon	0.1481	Demersal	PCON	Congridae	Paraconger	0.1092	Demersal	
POMA	Haemulidae	Pomadasys	0.1336	Demersal	CHIL	Diodontidae	Chilomycterus	0.2093	Demersal	
MYRI	Holocentridae	Myripristis	0.1336	Demersal	DIAT	Gerreidae	Diapterus	0.1198	Demersal	
GADL	Moridae	Gadella	0.1336	Mesopelagic	GOBI	Gobiidae	Gen. sp. Ind.	0.1987	Demersal	
DIAP	Myctophidae	Diaphus	0.1336	Mesopelagic	HYPO	Hemirhamphidae	Hyporhamphus	0.1198	Pelagic	
LEPI	Myctophidae	Lepidophanes	0.1336	Mesopelagic	PYTH	Heterenchelyidae	Pythonichthys	0.1987	Demersal	
MYCT	Myctophidae	Myctophum	0.1336	Mesopelagic	OSTI	Holocentridae	Ostichthys	0.1198	Demersal	
LEPO	Ophidiidae	Lepophidium	0.1481	Demersal	OCYU	Lutjanidae	Ocyurus	0.1198	Reef-associated	
BROT	Ophidiidae	Brotula	0.1336	Mesoopelagic	OTOP	Ophidiidae	Ophidiidae Otophidium		Demersal	
NEOB	Ophidiidae	Neobythites	0.1245	Demersal	CYCL	Paralichthyidae Cyclopsetta		0.1198	Demersal	
LONC	Opistognathidae	Lonchopisthus	0.1481	Demersal	SYAC	Paralichthyidae	Syacium	0.1092	Demersal	
CITH	Paralichthyidae	Citharichthys	0.1336	Demersal	AMAZ	Sciaenidae	†Amazonasciaena	0.1198	t	
ILIS	Pristigasteridae	llisha	0.1336	Pelagic	APLO	Sciaenidae	Aplodinotus	0.1198	Demersal	
CTEN	Sciaenidae	Ctenosciaena	0.1481	Demersal	EQUE	Sciaenidae	†Equetulus	0.1198	t	
SCIA	Sciaenidae	Sciaena	0.1336	Demersal	PARQ	Sciaenidae	Pareques	0.1198	Demersal	
STEL	Sciaenidae	Stellifer	0.1336	Demersal	PLAG	Sciaenidae	Plagioscion	0.1198	Demersal	
CYNO	Sciaenidae	Cynoscion	0.1245	Demersal	PLAR	Sciaenidae	†Protolarimus	0.1198	t	
POLY	Sternoptychidae	Polyipnus	0.1481	Mesopelagic	XENO	Sciaenidae	, †Xenotolithus	0.1198	t	
SAUR	Synodontidae	Saurida	0.1481	Demersal	PRTO	Sciaenidae	Protosciaena	0.1092	Demersal	
Axis 2		Brasil Basin (BMM)			SCOR	Scorpaenidae	Gen. sp. Ind.	0.1092	Demersal	
ID	Family	Genera	Score	Habitat	SPHA	Sparidae	†Sphaerodus	0.2093	t	
ALBU	Albulidae	Albula	0.1198	Demersal	ARCH	Sparidae	Archosargus	0.1198	Demersal	
APOG	Apogonidae	Apogon	0.1987	Reef-associated						

ID DDAC		Panamá and Ver VLM)	nezuela ba	isins (PLM and	Continue.				
DDAC	Family	Genera	Score	Habitat	ID	Family	Genera	Score	Habitat
PRAS	Acropomatidae	Parascombrops	0.1312	Demersal	CITH	Paralichthyidae	Citharichthys	0.1312	Demersal
APOG	Apogonidae	Apogon	0.1104	Reef-associated	SYAC	Paralichthyidae	Syacium	0.1312	Demersal
BAGR	Ariidae	Bagre	0.1312	Demersal	PRTO	Sciaenidae	Protosciaena	0.1492	Demersal
MEMB	Atherinidae	Membras	0.1312	Pelagic	SCIA	Sciaenidae	Sciaena	0.1312	Demersal
BREG	Bregmacerotidae	Bregmaceros	0.1492	Demersal	CTEN	Sciaenidae	Ctenosciaena	0.1104	Demersal
TRAC	Carangidae	Trachurus	0.1312	Demersal	POLY	Sternoptychidae	Polyipnus	0.1492	Mesopelagic
OPIS	Clupeidae	Opisthonema	0.1492	Pelagic	MAUR	Sternoptychidae	Maurolicus	0.1312	Mesopelagic
HARE	Clupeidae	Harengula	0.1312	Pelagic	SAUR	Synodontidae	Saurida	0.1492	Demersal
HILD	Congridae	Hildebrandia	0.1492	Demersal	PRIO	Triglidae	Prionotus	0.1492	Demersal
ARIO	Congridae	Ariosoma	0.1104	Demersal	Axis 2		Dominican Rep	ublic Bas	in (DLM)
SYMP	Cynoglossidae	Symphurus	0.1312	Demersal	ID	Family	Genera	Score	Habitat
NCH	Engraulidae	Anchoa	0.1312	Pelagic	ALBU	Albulidae	Albula	0.1578	Demersal
ENGR	Engraulidae	Engraulis	0.1104	Pelagic	ARIU	Ariidae	Gen., sp. Ind.	0.1373	Demersal
GERR	Gerreidae	Gerres	0.1312	Demersal	DINE	Bythitidae	Gen. sp. Ind.	0.1578	Demersal
EUCI	Gerreidae	Eucinostomus	0.1104	Demersal	CALA	Bythitidae	Calamopteryx	0.1373	Reef-associated
	Haemulidae	Pomadasys	0.1492	Demersal	CARA	Carapidae	Carapus	0.1373	Demersal
	Haemulidae	Uninoprisus	0.1312	Demersal		Cyrrogiossidae	Cynoglossus	0.1373	Reel-associated
	Lactariidaa	Lactarius	0.1104	Bathydomorcal		Homithamphidao	Hyporborphus	0.1373	Demersar
	Lutianidae	Lacianus	0.1104	Demercal	PYTH	Heterenchelvidae	Pythonichthys	0.1373	Demercal
STEL	Merlucciidae	Steindachneria	0.1312	Demersal	HYGO	Myctonhidae	Hyaophum	0.1373	Mesonelagic
GADI	Moridae	Gadella	0.1312	Demersal	MYCT	Myctophidae	Myctophum	0.1373	Mesopelagic
MUGI	Muqilidae	Muail	0.1492	Demersal	BROT	Ophididae	Brotula	0.1578	Demersal
AMP	Myctophidae	Lampadena	0.1312	Mesopelagic	PLOT	Plotosidae	Plotosus	0.1373	Demersal
NEOB	Ophidiidae	Neobythites	0.1312	Demersal	BAIR	Sciaenidae	Bairdiella	0.1443	Demersal
ONC	Opistognathidae	Lonchopisthus	0.1492	Demersal	MENT	Sciaenidae	Menticirrhus	0.1373	Demersal
OPIG	Opistognathidae	Opistognathus	0.1312	Demersal	DIPL	Sparidae	Diplodus	0.1578	Demersal
LONC DPIG	Opistognathidae Opistognathidae	Lonchopisthus Opistognathus	0.1492 0.1312	Demersal Demersal	MENT DIPL	Sciaenidae Sparidae	Menticirrhus Diplodus	0.1373 0.1578	Demersal Demersal

Late Miocene

	Pliocene													
Axis 1		Ecuador Basin (EPI)		Axis 2		Panama and Co	Panama and Costa Rica basins (PPI and CRPI)						
ID	Family	Genera	Score	Habitat	ID	Family	Genera	Score	Habitat					
ARIU	Ariidae	Gen., sp. Ind.	0.1509	Demersal	PRAS	Acropomatidae	Parascombrops	0.2061	Demersal					
PORI	Batrachoididae	Porichthys	0.1505	Demersal	CALA	Bythitidae	Calamopteryx	0.2061	Reef-associated					
BREG	Bregmacerotidae	Bregmaceros	0.1505	Demersal	LOBI	Myctophidae	Lobianchia	0.2061	Demersal					
TRAC	Carangidae	Trachurus	0.1765	Demersal	HAEM	Haemulidae	Haemulon	0.1869	Demersal					
CETN	Centropomidae	Centropomus	0.1509	Demersal	ALBU	Albulidae	Albula	0.1775	Demersal					
CLUP	Clupeidae	Clupea	0.1509	Pelagic	BENT	Myctophidae	Benthosema	0.1775	Epipelagic					
OPIS	Clupeidae	Opisthonema	0.1264	Pelagic	DIPL	Sparidae	Diplodus	0.1775	Demersal					
RHEC	Congridae	Rhechias	0.1264	Demersal	POLY	Sternoptychidae	Polyipnus	0.1775	Mesopelagic					
RHYG	Congridae	Rhynchoconger	0.1264	Demersal	SPAR	Sparidae	Sparus	0.1775	Demersal					
SYMP	Cynoglossidae	Symphurus	0.1509	Demersal	NEOB	Ophidiidae	Neobythites	0.1583	Demersal					
ANCH	Engraulidae	Anchoa	0.1509	Pelagic	UMBR	Sciaenidae	Umbrina	0.1474	Demersal					
ORTH	Haemulidae	Orthopristis	0.1509	Demersal	SAUR	Synodontidae	Saurida	0.1412	Demersal					
POMA	Haemulidae	Pomadasys	0.1509	Demersal	PLOT	Plotosidae	Plotosus	0.1209	Demersal					
ANIS	Haemulidae	Anisostrema	0.1264	Reef-associated	BATH	Bathyclupeidae	Bathyclupea	0.1136	Demersal					
LACT	Lactariidae	Lactarius	0.1509	Demersal	CARG	Carangidae	Gen., sp. Ind.	0.1136	Demersal					
LUTJ	Lutjanidae	Lutjanus	0.1765	Demersal	GERR	Gerreidae	Gerres	0.1136	Demersal					
STEI	Merlucciidae	Steindachneria	0.1765	Demersal	OCYU	Lutjanidae	Ocyurus	0.1136	Reef-associated					
LAEM	Moridae	Laemonema	0.1264	Demersal	GADL	Moridae	Gadella	0.1136	Demersal					
OPIG	Opistognathidae	Opistognathus	0.1509	Demersal	DION	Myctophidae	Diogenichthys	0.1136	Pelagic					
SYAC	Paralichthyidae	Syacium	0.1765	Demersal	LAMP	Myctophidae	Lampadena	0.1136	Pelagic					
CITH	Paralichthyidae	Citharichthys	0.1509	Demersal	TRIP	Myctophidae	Triphoturus	0.1136	Pelagic					
ISOP	Sciaenidae	Isopisthus	0.1264	Demersal	MYCT	Myctophidae	Myctophum	0.1136	Mesopelagic					
STEL	Sciaenidae	Stellifer	0.1264	Demersal										
MAUR	Sternoptychidae	Maurolicus	0.1509	Demersal										

				Pleistoce	ne					
Axis 1		Costa Rica and Pa	nama basins	(CRPE and PPE)	Continu	ie				
ID	Family	Genera	Score	Habitat	ID	Family	Genera	Score	Habitat	
PRAS	Acropomatidae	Parascombrops	0.1917	Demersal	BROT	Ophidiidae	Brotula	0.1917	Demersal	
ALBU	Albulidae	Albula	0.1049	Demersal	OTOP	Ophidiidae	Otophidium	0.1917	Demersal	
APOG	Apogonidae	Apogon	0.1917	Reef-associated	LEPO	Ophidiidae	Lepophidium	0.1194	Demersal	
ARIO	Ariidae	Ariopsis	0.1917	Demersal	NEOB	Ophidiidae	Neobythites	0.1049	Demersal	
PORI	Batrachoididae	Porichthys	0.1917	Demersal	LONC	Opistognathidae	Lonchopisthus	0.1917	Demersal	
BREG	Bregmacerotidae	Bregmaceros	0.1917	Demersal	OPIG	Opistognathidae	Opistognathus	0.1049	Demersal	
CALA	Bythitidae	Calamopteryx	0.1049	Reef-associated	CITH	Paralichthyidae	Citharichthys	0.1917	Demersal	
OGIB	Bythitidae	Ogilbichthys	0.1049	Reef-associated	SYAC	Paralichthyidae	Syacium	0.1917	Demersal	
CETN	Centropomidae	Centropomus	0.1049	Demersal	PRTO	Sciaenidae	Protosciaena	0.1049	Demersal	
PCON	Congridae	Paraconger	Paraconger 0.1049 Demersal POLY Sternoptych		Sternoptychidae	Polyipnus	0.1917	Demersal		
RHYG	Congridae	Rhynchoconger	0.1049	Demersal	Axis 2		Panama Basin (PP	E)		
SYMP	Cynoglossidae	Symphurus 0.1917 Demersal		ID	Family	Genera	Score	Habitat		
ANCH	Engraulidae	Anchoa	Anchoa 0.1049 Pelagic BOTH Bothidae		Bothidae	Gen. et sp. Ind.	0.2114	Demersal		
EUCI	Gerreidae	Eucinostomus	0.1049	Demersal	DINE	Bythitidae	Gen. sp. Ind.	0.2114	Demersal	
GOBI	Gobiidae	Gen. sp. Ind.	0.1917	Demersal	ECHI	Bythitidae	Echiodon	0.2114	Demersal	
HAEM	Haemulidae	Haemulon	0.1917	Demersal	CLUP	Clupeidae	Clupea	0.2114	Pelagic	
PRTO	Lutjanidae	Pristipomoides	0.1917	Demersal	CONG	Congridae	Conger	0.2114	Demersal	
LUTJ	Lutjanidae	Lutjanus	0.1049	Demersal	PYTH	Heterenchelyidae	Pythonichthys	0.2114	Demersal	
COEL	Macrouridae	Coelorhinchus	0.1917	Reef-associated	OCYU	Lutjanidae	Ocyurus	0.2114	Reef-associated	
STEI	Merlucciidae	Steindachneria	0.1049	Demersal	OPHD	Ophidiidae	Ophidion	0.2208	Demersal	
GADL	Moridae	Gadella	0.1917	Mesopelagic	CHER	Ophidiidae	Cherublemma	0.2114	Demersal	
DIAP	Myctophidae	Diaphus	0.1917	Mesopelagic	PLOT	Plotosidae	Plotosus	0.2114	Demersal	
MYCT	Myctophidae	Myctophum	um 0.1917 Mesopelagic		SAUR	Synodontidae	Saurida	0.2114	Demersal	
BENT	Myctophidae	Benthosema	0.1049	Mesopelagic						

dae Benthosema 0.1049 Mesopelagic

Jonuly

_						Pa	cific	coas	st	Caribbean coast												Atlantic									
	Ep	oche	Stage	planktonic Foramini	Nanno-	Panar	ıma Ecuador (Ecuador		Ecuador Esmeralda - Borbon		Ecuador		Ecuador		ta Rica			Panama			Jamaica	Dominican Republic	Colombia	Ven	ezuela	Trin	idad	Brazil	
м	a			fera	plankton	Buric Penins	a ula	Esmer Bor	imon	Bastimentos Cayo Agua			Valiente Peninsula	Escudo de Veraguas	Panama Canal Basin	Darien	Bowden	Cibao Valley	Alta Guajira Peninsula	Falcon Lara	Northeastern Venezuela	Central Range	Southern Range	Bragança Viseu Basin	Ма						
	Ho	L	Ionian		NN 21 - NN 20												_			5											
1	- uebo	м	Calabri	N 22	NN 19	FM		ē ₂ 🛛	~~~			u Ma					oastal Ip			PI PI	M W				F 1						
2	Piste	-	an		NN 18 -	An			***	5 -		<u>ش کی م</u>		. 5			Grot			de j	3"				2						
	ā	E	an	N 20	NN 17	H R	<mark>22</mark>	5 4 🛛	\otimes	No.	***	W W		do de			5			San		0									
ľ	- 6	L	Piacen zian	N 21	NN 16	Buri				tio Bar ano FA	***	Bast		Rerage Verage			Sowden Sowden				¥ lag				ŀ						
4	_ 0		an		NN 15	fact of the sector						en V	ole M					8		e FM		<u>b</u>	E N		1 4						
5	ile	Е	ancle	N 19	- NN 13	3						Cayo						2-		Codor			Morne		5						
ľ	-		ž	N 18	NN 12		-+	= 🗙	~~~			- ****	5°			××××						-			F ĭ						
6	-		nian	14 10				zole F	***	ni FM	***		Point Point			E 💥		a alter					• n n n n n n n n n n n n n n n n n n n		6						
7			lessi		NN 11b		- 11	ő	***	Usca	****		In the second	>	as FM	adne		⁹ W			1 (i 💥	Inilla F			7						
			~	N 17					~~~		***		3		Chagn	ng 👬		8_		0											
8	-				NN 11a								FM		Ŭ 💥	ว์		Era Cera		H 📈	<				- 8						
9		-	s		NN 40			_ 8	***							*Wiza					×				9						
			tonia	N 16				ra FN	***						. XXX	≻-				5		nes San									
10	-		Tor	N 15	NN 9			gostu	***						E un	a FM									- ¹⁰						
11	_			N 14	NN 8			4 ×	***						8					2					_ 11						
				N 14	NN 7		_	Ř	\otimes											E XXX	×										
12			Illian																	i i 💥	X				1 ⁻¹²						
13			rrava	N 12	NN 6			Ŕ	\times												×				13						
14	Z	M	s	N 11				_ ×	×××																14						
1.4	-	1	an	N 10	NN 5			heFA																	F'"						
15	_		inghi	11.3			- 11	Vici											a 🗙		×				_ 15						
16			Ľ	N Q														a FM		4 XX	8	asso F			16						
ſ				110	NN 4													Baito	Casti	ntaur.	X	ä									
17	-			N 7-6															E M	్ 💓	Ś	××××			- ¹⁷						
18			lian	14 /-0															- ***		3				18						
			diga		NN 3																2				Γ						
19	-		Bu	N 5																	×				- ¹⁹						
20																				o FM				2	20						
		E			NN 2		+													astill				- as E							
21	-		ian																					Piral	$ ^{21}$						
22	_		uitan	N 4																					22						
23			Aq																						23						
Ľ	0	igoce	ene	P 22	NP 25																				ť						

Jour

Highlights

- Review of Teleostean fossil otoliths from tropical America •
- Paleobiogeographic analyses of Neogene fish assemblage
- Fish otoliths may be used as geochronoindicators •

ournal Proposi

The authors of the entitle manuscript "AMPHI-AMERICAN NEOGENE TELEOSTEAN TROPICAL FISHES " have no competing interests to declare.

Everlyn González-Castillo, Félix Rodríguez-Mejía, Marcus Rodrigues Da Costa, and Orangel Aguilera